Adaptive Multiple Importance Sampling
نویسندگان
چکیده
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of the deterministic multiple mixture estimator of Owen and Zhou (2000). Although the convergence properties of the algorithm cannot be fully investigated, we demonstrate through a challenging banana shape target distribution and a population genetics example that the improvement brought by this technique is substantial.
منابع مشابه
Uniform Convergence of Sample Average Approximation with Adaptive Multiple Importance Sampling
We study sample average approximations under adaptive importance sampling in which the sample densities may depend on previous random samples. Based on a generic uniform law of large numbers, we establish uniform convergence of the sample average approximation to the function being approximated. In the optimization context, we obtain convergence of the optimal value and optimal solutions of the...
متن کاملAdaptive Importance Sampling Using Probabilistic Classification Vector Machines
This abstract presents the basic idea of a new adaptive methodology for reliability assessment using probabilistic classification vector machines (PCVMs) [1], a variant of support vector machines (SVMs) [2, 3]. The proposed method is pivoted around two principal concepts definition of an explicit failure boundary and its variability using PCVMs, and importance sampling (IS) [4–6]. The proposed ...
متن کاملAsymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria
We extend the method of adaptive two-stage sequential sampling toinclude designs where there is more than one criteria is used indeciding on the allocation of additional sampling effort. Thesecriteria, or conditions, can be a measure of the targetpopulation, or a measure of some related population. We developMurthy estimator for the design that is unbiased estimators fort...
متن کاملMethods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems
This paper is a survey of the major techniques and approaches available for the numerical approximation of integrals in statistics. We classify these into ve broad categories; namely, asymptotic methods, importance sampling, adaptive importance sampling, multiple quadrature and Markov chain methods. Each method is discussed giving an outline of the basic supporting theory and particular feature...
متن کاملAn Adaptive Population Importance Sampler: Learning from Errors
Monte Carlo (MC) methods are well-known computational techniques in different fields as signal processing, communications, and machine learning. An important class of MC methods is composed of importance sampling (IS) and its adaptive extensions, e.g., Adaptive Multiple IS (AMIS) and Population Monte Carlo (PMC). In this work, we introduce an adaptive and iterated importance sampler using a pop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009